map calculations, full-matrix least squares (SHELX76; Sheldrick, 1976) with anisotropic thermal parameters for non- H atoms and isotropic ones for H atoms, $w=\left[\sigma^{2}\left(\left|F_{o}\right|\right)+0.0040\left|F_{o}\right|^{2}\right]^{-1}$; all H atoms were located on difference Fourier map; final $R=0.048$ and $w R=0.057$ for 3380 observed reflections; $(\Delta / \sigma)_{\max }=0.08$; final difference map showed $\Delta \rho<0.13 \mathrm{e}^{\text {max }}{ }^{-3}$; atomic scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV); calculations were carried out on an IBM 4381-R24 computer at this university. Final atomic coordinates are listed in Table 1 and selected bond distances and angles in Table 2.* The molecule with

[^0]the atom numbering is shown in Fig. 1. The crystal structure is shown in Fig. 2.

Related literature. Mechanistic study of the valence tautomerism: Lown \& Matsumoto (1970), and Padwa \& Vega (1975).

References

Cromwell, N. H. \& McMaster, M. C. (1967). J. Org. Chem. 32, 2145-2148.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lown, J. W. \& Matsumoto, K. (1970). Chem. Commun. pp. 692-693.
Main, P., Hull, S. e., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Padwa, A. \& Vega, E. (1975). J. Org. Chem. 40, 175-181.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 2491-2493

N, N^{\prime}-Dicyclohexyl- N-4-phenylbutyrylurea

By Richard G. Ball
Merck Sharp \& Dohme Research Laboratories, PO Box 2000, Rahway, New Jersey 07065, USA
and R. Stanley Brown and Andrew J. Bennet
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G $2 G 2$

(Received 21 November 1989; accepted 15 March 1990)

Abstract

C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}, \quad M_{r}=370 \cdot 54\), monoclinic, $P 2_{1} / c, \quad a=11.0578$ (8), $\quad b=23.740$ (3), $\quad c=$ $8 \cdot 8991$ (9) $\AA, \beta=111 \cdot 117(8)^{\circ}, V=2179 \cdot 2 \AA^{3}, Z=4$, $D_{x}=1 \cdot 129 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $0.53 \mathrm{~mm}^{-1}, F(000)=808, T=296 \mathrm{~K}, R(F)=0.059$ for 3060 observed [$I \geq 3 \sigma(I)$] reflections. Bond distances and angles within the molecule are normal. There is one close intermolecular hydrogen-bonding distance between $\mathrm{O}(1)$ and $\mathrm{N}(1)$ of $2 \cdot 841$ (1) \AA. The $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(1)$ and $\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(14)-$ $O(2)$ torsion angles are $-10.6(3)$ and $-10.7(3)^{\circ}$ respectively.

Experimental. The title compound was prepared as a side product in a reaction to prepare N-methyl- N -(2-methylphenyl)-4-phenylbutanamide by reacting 4-phenylbutyric acid with dicyclohexylcarbodiimide and 2-methyl- N -methylaniline in acetonitrile. Re-

0108-2701/90/122491-03\$03.00
crystallization from ethanol/water yielded diffrac-tion-quality crystals.
Crystal $\quad 0.13 \times 0.21 \times 0.44 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer. Lattice parameters determined using 24 reflections with $18<2 \theta<40^{\circ}$. Lorentz-polarization correction applied; absorption correction using empirical method (absorption surface) (Walker \& Stuart, 1983). Maximum-minimum correction coefficients applied to F_{o} were 1.2219 and $0 \cdot 6630$. Intensity measurements in range $0<2 \theta<$ 140° (index limits: $h+10, k+28, l \pm 13$). Intensity standards: two reflections remeasured every 60 min of X-ray exposure time showed changes in intensity of $<0 \cdot 1 \%$. No decay correction. Total reflections ineasured: 4520; unique: 4242; 1182 unobserved [$I<$ $3 \sigma(I)] . R$ factor for averaging equivalent reflections $0 \cdot 020$. Structure solved by direct methods using SHELXS86 (Sheldrick, 1985). Full-matrix least-

Table 1. Positional $\left(\times 10^{4}\right)$ and thermal $\left(\times 10^{2}\right)$ parameters

	x	y	z	$U\left(\AA^{2}\right)^{*}$
$\mathrm{O}(1)$	$1719(1)$	$2931 \cdot 9(7)$	$769(2)$	$7 \cdot 01(5)$
$\mathrm{O}(2)$	$4974(1)$	$2742 \cdot 3(7)$	$-1001(2)$	$8 \cdot 90(6)$
$\mathrm{N}(1)$	$1224(1)$	$2365 \cdot 8(7)$	$-1413(2)$	$5 \cdot 82(5)$
$\mathrm{N}(2)$	$3071(1)$	$2922 \cdot 8(7)$	$-704(2)$	$5 \cdot 79(5)$
$\mathrm{C}(1)$	$144(2)$	$2067 \cdot 9(8)$	$-1177(2)$	$5 \cdot 62(6)$
$\mathrm{C}(2)$	$167(2)$	$1454(1)$	$-1622(3)$	$8 \cdot 26(9)$
$\mathrm{C}(3)$	$-951(3)$	$1132(1)$	$-1400(4)$	$9 \cdot 9(1)$
$\mathrm{C}(4)$	$-2234(2)$	$1392(1)$	$-2321(3)$	$9 \cdot 3(1)$
$\mathrm{C}(5)$	$-2256(2)$	$2007(1)$	$-1858(4)$	$10 \cdot 6(1)$
$\mathrm{C}(6)$	$-1142(2)$	$2334(1)$	$-2102(4)$	$9 \cdot 3(1)$
$\mathrm{C}(7)$	$1958(2)$	$2737 \cdot 9(8)$	$-368(2)$	$5 \cdot 40(6)$
$\mathrm{C}(8)$	$3256(2)$	$3535 \cdot 0(8)$	$-828(2)$	$6 \cdot 04(6)$
$\mathrm{C}(9)$	$2048(3)$	$3819(1)$	$-1954(3)$	$7 \cdot 83(9)$
$\mathrm{C}(10)$	$2315(3)$	$4431(1)$	$-2170(3)$	$9 \cdot 4(1)$
$\mathrm{C}(11)$	$2850(3)$	$4736(1)$	$-600(3)$	$9 \cdot 5(1)$
$\mathrm{C}(12)$	$4040(3)$	$4449(1)$	$537(4)$	$10 \cdot 0(1)$
$\mathrm{C}(13)$	$3770(3)$	$3829(1)$	$789(3)$	$8 \cdot 16(9)$
$\mathrm{C}(14)$	$4053(2)$	$2566 \cdot 9(9)$	$-684(2)$	$6 \cdot 29(6)$
$\mathrm{C}(15)$	$4000(2)$	$1959 \cdot 8(9)$	$-203(3)$	$6 \cdot 49(7)$
$\mathrm{C}(16)$	$5325(2)$	$1685 \cdot 1(9)$	$405(3)$	$6 \cdot 65(7)$
$\mathrm{C}(17)$	$5265(2)$	$1079(1)$	$890(3)$	$8 \cdot 24(9)$
$\mathrm{C}(18)$	$6563(2)$	$794 \cdot 5(9)$	$1549(3)$	$6 \cdot 71(7)$
$\mathrm{C}(19)$	$6844(2)$	$335(1)$	$795(3)$	$8 \cdot 09(9)$
$\mathrm{C}(20)$	$8030(3)$	$68(1)$	$1409(3)$	$9 \cdot 4(1)$
$\mathrm{C}(21)$	$8968(3)$	$257(1)$	$2769(3)$	$10 \cdot 0(1)$
$\mathrm{C}(22)$	$8719(3)$	$719(1)$	$3526(3)$	$10 \cdot 4(1)$
$\mathrm{C}(23)$	$7536(3)$	$987(1)$	$2931(3)$	$8 \cdot 8(1)$

* The equivalent isotropic thermal parameter U is given by $U=$ $\frac{1}{3} \sum_{i=1}^{3}, r_{i}^{2}$, where r_{i} are the principal values of the root-mean-square amplitudes of vibration.

Table 2. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(7)$	$1 \cdot 224$ (1)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.508$	$\begin{aligned} & 1.508(2) \\ & 1.493(3) \end{aligned}$
$\mathrm{O}(2)-\mathrm{C}(14)$	1.224 (2)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.493$	
$\mathrm{N}(1)-\mathrm{C}(1)$	1.467 (2)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.503$	1.503 (3)
$\mathrm{N}(1)-\mathrm{C}(7)$	$1 \cdot 327$ (2)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.535$	1.535 (2)
$\mathrm{N}(2)-\mathrm{C}(7)$	1.436 (2)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1 \cdot 5$	1.510 (2)
$\mathrm{N}(2)-\mathrm{C}(8)$	1.477 (2)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1 \cdot 5$	1.514 (2)
$\mathrm{N}(2)-\mathrm{C}(14)$	1.371 (2)	$\mathrm{C}(16)-\mathrm{C}(17) \quad 1 \cdot 5$	1.511 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.513 (2)	$\mathrm{C}(17)-\mathrm{C}(18) \quad 1.501$	1.501 (2)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.501 (2)	$\mathrm{C}(18)-\mathrm{C}(19) \quad 1.373$	1.373 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.526 (2)	$\mathrm{C}(18)-\mathrm{C}(23) \quad 1.387$	1.387 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.492 (3)	$\mathrm{C}(19)-\mathrm{C}(20) \quad 1.330$	1.380 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.519 (3)	$\mathrm{C}(20)-\mathrm{C}(21) \quad 1.336$	1.356 (3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.535 (2)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.365$	
$\mathrm{C}(8)-\mathrm{C}(9)$	1.510 (2)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.3658(3)$ 1
$\mathrm{C}(8)-\mathrm{C}(13)$	1.514 (2)		
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	123.0 (1)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	112.1 (1)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	117.9 (1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	111.5 (2)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(14)$	$122 \cdot 9$ (1)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$111 \cdot 3$ (1)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(14)$	118.5 (1)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	109.2 (1)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	109.6 (1)	$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{N}(2)$	120.5 (1)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$112 \cdot 2$ (1)	$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	120.7 (1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	111.3 (1)	$\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	118.7 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.0 (1)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	112.4 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.0 (2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	112.1 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.7 (1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	114.0 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	110.8 (2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$121 \cdot 3$ (1)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	111.1 (1)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	121.7 (2)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	124.8 (1)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	$117 \cdot 1$ (2)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$120 \cdot 9$ (1)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	121.5 (2)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	114.3 (1)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$120 \cdot 8$ (2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$112 \cdot 1$ (1)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	118.8 (2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(13)$	$113 \cdot 4$ (1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$120 \cdot 9$ (2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	111.4 (1)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	120.9 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.4 (1)		

squares refinement using F magnitudes. H atoms located at calculated positions ($\mathrm{C}-\mathrm{H} \quad 0.95 \AA$). H -atom thermal parameters fixed at 1.2 times those of the attached atom. Positional and anisotropic thermal parameters for all non-H atoms were refined. For 279 variables refined: $R=0.059, w R=$ $0 \cdot 090, S=2 \cdot 70$. Weights of $1 / \sigma^{2}\left(F^{2}\right)$ with $\sigma(F)$ as defined by Stout \& Jensen (1968, equation H.14) and the instability factor defined to be $0 \cdot 04 .(\Delta / \sigma)_{\max }=$ $0 \cdot 03$. Maximum peak height in final difference Fourier map $0 \cdot 17$ (4) e \AA^{-3}. Included as a variable was a secondary-extinction coefficient which refined to a value of 1.01×10^{-6}. Neutral-atom atomic scattering factors and f^{\prime} and $f^{\prime \prime}$ anomalous-dispersion values from International Tables for X-ray Crystallography (1974, Vol. IV). Computer programs used include the Enraf-Nonius (1985) SDP-Plus software and ORTEPII (Johnson, 1976). All calculations performed on a Sun Microsystems $3 / 260$ computer.
Positional and thermal parameters are listed in Table 1; selected distances and angles are presented in Table 2.* The molecule is depicted in Fig. 1 with the numbering scheme employed.

Related literature. The bonding geometry within the core of the molecule $[\mathrm{C}(1), \mathrm{N}(1), \mathrm{C}(7), \mathrm{O}(1), \mathrm{N}(2)$, $\mathrm{C}(8), \mathrm{C}(14), \mathrm{O}(2)$ and $\mathrm{C}(15)]$ is in good agreement

[^1]

Fig. 1. Perspective view of the molecule with 20% probability ellipsoids.
with the values observed in three related structures: Ishida, Yamashita, Takai \& Inoue (1983), Bechtel, Bideau \& Cotrait (1979) and Lovell \& Perkiison (1978).

References

Bechtel, F., Bideau, J.-P. \& Cotrait, M. (1979). Cryst. Struct. Commun. 8, 815-818.
Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Ishida, T., Yamashita, M., Takai, H. \& Inoue, M. (1983). Acta Cryst. C39, 1294-1297.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lovell, F. M. \& Perkinson, N. A. (1978). Cryst. Struct. Commun. 7, 7-14.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDard, pp. 175-189. Oxford Univ. Press.
Stout, G. H. \& Jensen, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Sequential Reaction of 2-Lithio-2-trimethylsilyl-1,3-dithiane with Dimethylformamide and Ammonia: Structure of Bis[(1,3-dithian-2-ylidene)methyl]amine

By Michael P. Brown, Philip C. Bulman Page,* Shaun Harkin \dagger and Allan P. Marchington
Robert Robinson and Donnan Laboratories, Department of Chemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, England

(Received 3 October 1989; accepted 24 May 1990)

Abstract

C}_{10} \mathrm{H}_{15} \mathrm{NS}_{4}, \quad M_{r}=277 \cdot 48\), monoclinic, $P 2_{1} / c, a=12.522$ (3), $b=17.81$ (1), $c=6.140$ (1) \AA, $\beta=100.41(1)^{\circ}, \quad V=1346.7 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.37 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мo $K \alpha)=0.71069 \AA, \mu=6.48 \mathrm{~cm}^{-1}$, $F(000)=584$, room temperature, $R=0.038$ for 1492 observed reflections. The bridging $\mathrm{C}=\mathrm{C}-\mathrm{N}-\mathrm{C}=\mathrm{C}$ group atoms are planar to within $0.014 \AA$; the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle is 125°. The $\mathrm{S}-\mathrm{C}$ distances range from 1.759 to $1.824 \AA$.

Experimental. Compound isolated unexpectedly (in 50% yield) from reaction between 2-lithio-2-trimethylsilyl-1,3-dithiane (generated from 2-trimethylsilyl-1,3-dithiane and n-butyllithium) and dimethylformamide following work-up with aqueous ammonium chloride solution. Crystals obtained by recrystallization from ethanol. Large block cut to $c a$ $0.35 \times 0.3 \times 0.3 \mathrm{~mm}$ and mounted on a glass fibre; Stoe Stadi-2 2 -circle diffractometer, 18 centred reflections $\left(3.3<\theta<17.3^{\circ}\right)$, graphite-monochromated Mo $K \alpha$; for data collection: $\theta_{\text {max }}=25^{\circ}, \omega$ scans in 0.01° steps, ω-scan width $(2.00+0.6 \sin \mu /$ $\tan \theta)^{\circ}, h 0$ to $15, k 0$ to $21, l-7$ to 7 (collected in layers of k), intensity-control reflections (one per layer) varied $\pm 3 \%$, yielding 2383 unique reflections of which 1492 with $F>6 \sigma(F)$ were retained. Space group $P 2_{1} / c$ from systematic absences ($h 0 l: l=2 n$; $0 k 0: k=2 n$).

[^2]0108-2701/90/122493-02\$03.00

Atoms located by automatic direct methods (SHELXS86; Sheldrick, 1986) followed by difference-Fourier syntheses with full-matrix, leastsquares refinement (SHELX76; Sheldrick, 1976), $w=\left[\sigma^{2}(F)+0.000164 F^{2}\right]^{-1}$, anisotropic thermal parameters for all non-H atoms. H atoms were located from difference Fourier synthesis but in the later stages of refinement were constrained at fixed bond distances ($\mathrm{C}-\mathrm{H}, 1.00 \AA ; \mathrm{N}-\mathrm{H}, 0.95 \AA$) and were refined with a common isotropic thermal parameter ($0.0791 \AA^{2}$ at convergence). $R=0.038, w R$ $=0.035, S=1 \cdot 192$, data:variable $=7 \cdot 3: 1,(\Delta \rho)_{\max }=$ $0 \cdot 22,(\Delta \rho)_{\text {min }}=-0.20 \mathrm{e}^{\AA^{-3}}$. Max Δ / σ in final cycle was 0.018 . Scattering factors were from SHELX76. Other programs used were CHEM3D and CALC (Gould, 1984).

Atomic parameters are listed in Table 1 and bond lengths and angles in Table 2.* The molecule and numbering scheme are shown in Fig. 1. Atoms C(4), $C(8), C(9), C(10)$, and $N(1)$ are planar to within $0.014 \AA$; deviations from the best plane are as follows: $\mathrm{C}(4),-0.012(3) ; \mathrm{C}(8), 0.002(4) ; \mathrm{C}(9)$, 0.014 (3); C(10), -0.014 (4); $\mathrm{N}(1), 0.009$ (3) \AA.

Related literature. The compound $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NS}_{4}$ is a dienamine in which the β-carbon atoms of the vinyl

[^3]
[^0]: * Lists of anisotropic thermal parameters for non-H atoms, positional and thermal parameters for H atoms, bond distances and angles involving H atoms, least-squares-planes data and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53199 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2 HU , England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom positional and thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52866 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.
 \dagger Shell Research Ltd, Sittingbourne Research Centre, Sittingbourne, Kent ME9 8 AG, England.

[^3]: * Lists of structure factors, anisotropic thermal parameters, full bond lengths, angles, torsion angles and H -atom parameters have been deposited with the British/Library Document Supply Centre as Supplementary Publication No. SUP 53178 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

